Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 42(1): e110565, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36377476

RESUMO

Cortical neuronal networks control cognitive output, but their composition and modulation remain elusive. Here, we studied the morphological and transcriptional diversity of cortical cholinergic VIP/ChAT interneurons (VChIs), a sparse population with a largely unknown function. We focused on VChIs from the whole barrel cortex and developed a high-throughput automated reconstruction framework, termed PopRec, to characterize hundreds of VChIs from each mouse in an unbiased manner, while preserving 3D cortical coordinates in multiple cleared mouse brains, accumulating thousands of cells. We identified two fundamentally distinct morphological types of VChIs, bipolar and multipolar that differ in their cortical distribution and general morphological features. Following mild unilateral whisker deprivation on postnatal day seven, we found after three weeks both ipsi- and contralateral dendritic arborization differences and modified cortical depth and distribution patterns in the barrel fields alone. To seek the transcriptomic drivers, we developed NuNeX, a method for isolating nuclei from fixed tissues, to explore sorted VChIs. This highlighted differentially expressed neuronal structural transcripts, altered exitatory innervation pathways and established Elmo1 as a key regulator of morphology following deprivation.


Assuntos
Lobo Parietal , Transcriptoma , Camundongos , Animais , Interneurônios/fisiologia , Colina O-Acetiltransferase , Colinérgicos/metabolismo , Células Receptoras Sensoriais/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
2.
J Neurosci ; 42(7): 1184-1195, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-34893549

RESUMO

Nonlinear synaptic integration in dendrites is a fundamental aspect of neural computation. One such key mechanism is the Ca2+ spike at the apical tuft of pyramidal neurons. Characterized by a plateau potential sustained for tens of milliseconds, the Ca2+ spike amplifies excitatory input, facilitates somatic action potentials (APs), and promotes synaptic plasticity. Despite its essential role, the mechanisms regulating it are largely unknown. Using a compartmental model of a layer 5 pyramidal cell (L5PC), we explored the plateau and termination phases of the Ca2+ spike under input current perturbations, long-step current-injections, and variations in the dendritic high-voltage-activated Ca2+ conductance (that occur during cholinergic modulation). We found that, surprisingly, timed excitatory input can shorten the Ca2+ spike duration while inhibitory input can either elongate or terminate it. A significant elongation also occurs when the high-voltage-activated Ca2+ channels (CaHVA) conductance is increased. To mechanistically understand these phenomena, we analyzed the currents involved in the spike. The plateau and termination phases are almost exclusively controlled by the CaHVA inward current and the Im outward K+ current. We reduced the full model to a single-compartment model that faithfully preserved the responses of the Ca2+ spike to interventions and consisted of two dynamic variables: the membrane potential and the K+-channel activation level. A phase-plane analysis of the reduced model provides testable predictions for modulating the Ca2+ spike and reveals various dynamical regimes that explain the robust nature of the spike. Regulating the duration of the Ca2+ spike significantly impacts the cell synaptic-plasticity window and, as we show, its input-output relationship.SIGNIFICANCE STATEMENT Pyramidal neurons are the cortex's principal projection neurons. In their apical tuft, dendritic Ca2+ spikes significantly impact information processing, synaptic plasticity, and the cell's input-output relationship. Therefore, it is essential to understand the mechanisms regulating them. Using a compartmental model of a layer 5 pyramidal cell (L5PC), we explored the Ca2+ spike responses to synaptic perturbations and cholinergic modulation. We showed a counterintuitive phenomenon: early excitatory input shortens the spike, whereas weak inhibition elongates it. Also, we demonstrated that acetylcholine (ACh) extends the spike. Through a reduced model containing only the membrane potential and the K+-channel activation level, we explained these phenomena using a phase-plane analysis. Our work provides new information about the robustness of the Ca2+ spike and its controlling mechanisms.


Assuntos
Acetilcolina/metabolismo , Cálcio/metabolismo , Dendritos/metabolismo , Modelos Neurológicos , Plasticidade Neuronal/fisiologia , Células Piramidais/metabolismo , Potenciais de Ação/fisiologia , Animais , Humanos , Sinapses/fisiologia
3.
Elife ; 102021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34723796

RESUMO

How cortical circuits build representations of complex objects is poorly understood. Individual neurons must integrate broadly over space, yet simultaneously obtain sharp tuning to specific global stimulus features. Groups of neurons identifying different global features must then assemble into a population that forms a comprehensive code for these global stimulus properties. Although the logic for how single neurons summate over their spatial inputs has been well explored in anesthetized animals, how large groups of neurons compose a flexible population code of higher-order features in awake animals is not known. To address this question, we probed the integration and population coding of higher-order stimuli in the somatosensory and visual cortices of awake mice using two-photon calcium imaging across cortical layers. We developed a novel tactile stimulator that allowed the precise measurement of spatial summation even in actively whisking mice. Using this system, we found a sparse but comprehensive population code for higher-order tactile features that depends on a heterogeneous and neuron-specific logic of spatial summation beyond the receptive field. Different somatosensory cortical neurons summed specific combinations of sensory inputs supra-linearly, but integrated other inputs sub-linearly, leading to selective responses to higher-order features. Visual cortical populations employed a nearly identical scheme to generate a comprehensive population code for contextual stimuli. These results suggest that a heterogeneous logic of input-specific supra-linear summation may represent a widespread cortical mechanism for the synthesis of sparse higher-order feature codes in neural populations. This may explain how the brain exploits the thalamocortical expansion of dimensionality to encode arbitrary complex features of sensory stimuli.


Assuntos
Córtex Somatossensorial/fisiologia , Córtex Visual/fisiologia , Vigília/fisiologia , Animais , Feminino , Masculino , Camundongos , Estimulação Física , Tato
4.
J Neurochem ; 158(6): 1320-1333, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33301603

RESUMO

One of the urgent tasks of neuroscience is to understand how neuronal circuits operate, what makes them fail, and how to repair them when needed. Achieving this goal requires identifying the principal circuitry elements and their interactions with one another. However, what constitutes 'an atom' of a neuronal circuit, a neuronal type, is a complex question. In this review we focus on a class of cortical neurons that are exclusively identified by the expression of vasoactive intestinal polypeptide (VIP) and choline acetyltransferase (ChAT). The genetic profile of these VIP+ /ChAT+ interneurons suggests that they can release both γ-aminobutyric acid (GABA) and acetylcholine (ACh). This hints to a specific potential role in the cortical circuitry. Yet the VIP+ /ChAT+ interneurons are sparse (a mere 0.5% of the cortical neurons), which raises questions about their potential to significantly affect the circuit function. In view of recent developments in genetic techniques that allow for direct manipulation of these neurons, we provide a thorough and updated picture of the properties of the VIP+ /ChAT+ interneurons. We discuss their genetic profile, their physiological and structural properties, and their input-output mapping in sensory cortices and the medial prefrontal cortex (mPFC). Then, we examine possible amplification mechanisms for mediating their function in the cortical microcircuit. Finally, we discuss directions for further exploration of the VIP+ /ChAT+ population, focusing on its function during behavioral tasks as compared to the VIP+ /ChAT- population.


Assuntos
Córtex Cerebral/metabolismo , Colina O-Acetiltransferase/biossíntese , Colina O-Acetiltransferase/genética , Interneurônios/metabolismo , Peptídeo Intestinal Vasoativo/biossíntese , Peptídeo Intestinal Vasoativo/genética , Animais , Córtex Cerebral/química , Colina O-Acetiltransferase/análise , Humanos , Interneurônios/química , Transcriptoma/fisiologia , Peptídeo Intestinal Vasoativo/análise
5.
PLoS Biol ; 18(2): e3000613, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32027647

RESUMO

Cortical interneurons expressing vasoactive intestinal polypeptide (VIP) and choline acetyltransferase (ChAT) are sparsely distributed throughout the neocortex, constituting only 0.5% of its neuronal population. The co-expression of VIP and ChAT suggests that these VIP/ChAT interneurons (VChIs) can release both γ-aminobutyric acid (GABA) and acetylcholine (ACh). In vitro physiological studies quantified the response properties and local connectivity patterns of the VChIs; however, the function of VChIs has not been explored in vivo. To study the role of VChIs in cortical network dynamics and their long-range connectivity pattern, we used in vivo electrophysiology and rabies virus tracing in the barrel cortex of mice. We found that VChIs have a low spontaneous spiking rate (approximately 1 spike/s) in the barrel cortex of anesthetized mice; nevertheless, they responded with higher fidelity to whisker stimulation than the neighboring layer 2/3 pyramidal neurons (Pyrs). Analysis of long-range inputs to VChIs with monosynaptic rabies virus tracing revealed that direct thalamic projections are a significant input source to these cells. Optogenetic activation of VChIs in the barrel cortex of awake mice suppresses the sensory responses of excitatory neurons in intermediate amplitudes of whisker deflections while increasing the evoked spike latency. The effect of VChI activation on the response was similar for both high-whisking (HW) and low-whisking (LW) conditions. Our findings demonstrate that, despite their sparsity, VChIs can effectively modulate sensory processing in the cortical microcircuit.


Assuntos
Colina O-Acetiltransferase/metabolismo , Interneurônios/fisiologia , Córtex Somatossensorial/citologia , Peptídeo Intestinal Vasoativo/metabolismo , Animais , Colina O-Acetiltransferase/genética , Potenciais Evocados , Potenciais Pós-Sinápticos Inibidores , Integrases/genética , Interneurônios/metabolismo , Camundongos , Camundongos Transgênicos , Vias Neurais , Neurônios/metabolismo , Neurônios/fisiologia , Optogenética , Córtex Somatossensorial/metabolismo , Peptídeo Intestinal Vasoativo/genética , Núcleos Ventrais do Tálamo/metabolismo , Vibrissas
6.
Cell Rep ; 23(4): 1034-1044, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29694883

RESUMO

The excitability of the apical tuft of layer 5 pyramidal neurons is thought to play a crucial role in behavioral performance and synaptic plasticity. We show that the excitability of the apical tuft is sensitive to adrenergic neuromodulation. Using two-photon dendritic Ca2+ imaging and in vivo whole-cell and extracellular recordings in awake mice, we show that application of the α2A-adrenoceptor agonist guanfacine increases the probability of dendritic Ca2+ events in the tuft and lowers the threshold for dendritic Ca2+ spikes. We further show that these effects are likely to be mediated by the dendritic current Ih. Modulation of Ih in a realistic compartmental model controlled both the generation and magnitude of dendritic calcium spikes in the apical tuft. These findings suggest that adrenergic neuromodulation may affect cognitive processes such as sensory integration, attention, and working memory by regulating the sensitivity of layer 5 pyramidal neurons to top-down inputs.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Dendritos/metabolismo , Guanfacina/farmacologia , Células Piramidais/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Animais , Memória de Curto Prazo/efeitos dos fármacos , Memória de Curto Prazo/fisiologia , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência por Excitação Multifotônica , Células Piramidais/citologia , Receptores Adrenérgicos alfa 2/genética
7.
Sci Rep ; 8(1): 4311, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29523815

RESUMO

Three-dimensional structures in biological systems are routinely evaluated using large image stacks acquired from fluorescence microscopy; however, analysis of such data is muddled by variability in the signal across and between samples. Here, we present Intensify3D: a user-guided normalization algorithm tailored for overcoming common heterogeneities in large image stacks. We demonstrate the use of Intensify3D for analyzing cholinergic interneurons of adult murine brains in 2-Photon and Light-Sheet fluorescence microscopy, as well as of mammary gland and heart tissues. Beyond enhancement in 3D visualization in all samples tested, in 2-Photon in vivo images, this tool corrected errors in feature extraction of cortical interneurons; and in Light-Sheet microscopy, it enabled identification of individual cortical barrel fields and quantification of somata in cleared adult brains. Furthermore, Intensify3D enhanced the ability to separate signal from noise. Overall, the universal applicability of our method can facilitate detection and quantification of 3D structures and may add value to a wide range of imaging experiments.


Assuntos
Imageamento Tridimensional/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Software , Animais , Encéfalo/citologia , Imageamento Tridimensional/normas , Camundongos , Microscopia de Fluorescência por Excitação Multifotônica/normas , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...